Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 536
Filtrar
1.
Food Chem ; 448: 139144, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38579559

RESUMO

Tris(2,4-di-tert-butylphenyl) phosphite (AO168), an organophosphite antioxidant, can be oxidized to tris(2,4-di-tert-butylphenyl) phosphate (AO168 = O) during the production, processing, and application of plastics. AO168 = O can be further transformed to bis(2,4-di-tert-butylphenyl) phosphate and 2,4-di-tert-butylphenol. Here, we discovered the contamination of AO168 and its transformation products in dairy products for the first time. More samples contained AO168 (mean concentration: 8.78 ng/g wet weight [ww]), bis(2,4-di-tert-butylphenyl) phosphate (mean:11.1 ng/g ww) and 2,4-di-tert-butylphenol (mean: 46.8 ng/g ww) than AO168 = O (mean: 40.2 ng/g ww). The concentrations of AO168 and its transformation products were significantly correlated, and differed with the packaging material and storage conditions of the product. Estimated daily intakes (EDIs) of AO168 and its transformation products were calculated. Although the overall dietary risks were below one, transformation products accounted for 96.7% of the total hazard quotients. The high-exposure EDIs of total AO168 were above the threshold of toxicological concern (300 ng/kg bw/day), and deserve continual monitoring.


Assuntos
Laticínios , Contaminação de Alimentos , Fosfitos , Contaminação de Alimentos/análise , Humanos , Fosfitos/análise , Fosfitos/química , Laticínios/análise , Exposição Dietética/análise , Animais , Embalagem de Alimentos/instrumentação , Compostos Organofosforados/análise , Compostos Organofosforados/química
2.
Biochemistry ; 63(8): 1016-1025, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38546289

RESUMO

Kinetic parameters are reported for glycerol 3-phosphate dehydrogenase (GPDH)-catalyzed hydride transfer from the whole substrate glycerol 3-phosphate (G3P) or truncated substrate ethylene glycol (EtG) to NAD, and for activation of the hydride transfer reaction of EtG by phosphite dianion. These kinetic parameters were combined with parameters for enzyme-catalyzed hydride transfer in the microscopic reverse direction to give the reaction equilibrium constants Keq. Hydride transfer from G3P is favored in comparison to EtG because the carbonyl product of the former reaction is stabilized by hyperconjugative electron donation from the -CH2R keto substituent. The kinetic data show that the phosphite dianion provides the same 7.6 ± 0.1 kcal/mol stabilization of the transition states for enzyme-catalyzed reactions in the forward [reduction of NAD by EtG] and reverse [oxidation of NADH by glycolaldehyde] directions. The experimental evidence that supports a role for phosphite dianion in stabilizing the active closed form of the GPDH (EC) relative to the ca. 6 kcal/mol more unstable open form (EO) is summarized.


Assuntos
Glicerolfosfato Desidrogenase , Glicerofosfatos , Fosfitos , Glicerolfosfato Desidrogenase/química , NAD/metabolismo , Catálise , Cinética
3.
Sci Rep ; 14(1): 5634, 2024 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-38454122

RESUMO

In these studies, we designed and investigated the potential anticancer activity of five iron(II) cyclopentadienyl complexes bearing different phosphine and phosphite ligands. All complexes were characterized with spectroscopic analysis viz. NMR, FT-IR, ESI-MS, UV-Vis, fluorescence, XRD (for four complexes) and elemental analyses. For biological studies, we used three types of cells-normal peripheral blood mononuclear (PBM) cells, leukemic HL-60 cells and non-small-cell lung cancer A549 cells. We evaluated cell viability and DNA damage after cell incubation with these complexes. We observed that all iron(II) complexes were more cytotoxic for HL-60 cells than for A549 cells. The complex CpFe(CO)(P(OPh)3)(η1-N-maleimidato) 3b was the most cytotoxic with IC50 = 9.09 µM in HL-60 cells, IC50 = 19.16 µM in A549 and IC50 = 5.80 µM in PBM cells. The complex CpFe(CO)(P(Fu)3)(η1-N-maleimidato) 2b was cytotoxic only for both cancer cell lines, with IC50 = 10.03 µM in HL-60 cells and IC50 = 73.54 µM in A549 cells. We also found the genotoxic potential of the complex 2b in both types of cancer cells. However, the complex CpFe(CO)2(η1-N-maleimidato) 1 which we studied previously, was much more genotoxic than complex 2b, especially for A549 cells. The plasmid relaxation assay showed that iron(II) complexes do not induce strand breaks in fully paired ds-DNA. The DNA titration experiment showed no intercalation of complex 2b into DNA. Molecular docking revealed however that complexes CpFe(CO)(PPh3) (η1-N-maleimidato) 2a, 2b, 3b and CpFe(CO)(P(OiPr)3)(η1-N-maleimidato) 3c have the greatest potential to bind to mismatched DNA. Our studies demonstrated that the iron(II) complex 1 and 2b are the most interesting compounds in terms of selective cytotoxic action against cancer cells. However, the cellular mechanism of their anticancer activity requires further research.


Assuntos
Antineoplásicos , Carcinoma Pulmonar de Células não Pequenas , Complexos de Coordenação , Neoplasias Pulmonares , Fosfinas , Fosfitos , Humanos , Simulação de Acoplamento Molecular , Complexos de Coordenação/química , Ferro , Leucócitos Mononucleares/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier , DNA/metabolismo , Maleimidas , Compostos Ferrosos/farmacologia , Antineoplásicos/química , Ligantes , Linhagem Celular Tumoral
4.
ACS Nano ; 18(3): 2195-2209, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38194222

RESUMO

Nanocarrier-based cytoplasmic protein delivery offers opportunities to develop protein therapeutics; however, many delivery systems are positively charged, causing severe toxic effects. For enhanced therapeutics, it is also of great importance to design nanocarriers with intrinsic bioactivity that can be integrated with protein drugs due to the limited bioactivity of proteins alone for disease treatment. We report here a protein delivery system based on anionic phosphite-terminated phosphorus dendrimers with intrinsic anti-inflammatory activity. A phosphorus dendrimer termed AK-137 with optimized anti-inflammatory activity was selected to complex proteins through various physical interactions. Model proteins such as bovine serum albumin, ribonuclease A, ovalbumin, and fibronectin (FN) can be transfected into cells to exert their respective functions, including cancer cell apoptosis, dendritic cell maturation, or macrophage immunomodulation. Particularly, the constructed AK-137@FN nanocomplexes display powerful therapeutic effects in acute lung injury and acute gout arthritis models by integrating the anti-inflammatory activity of both the carrier and protein. The developed anionic phosphite-terminated phosphorus dendrimers may be employed as a universal carrier for protein delivery and particularly utilized to deliver proteins and fight different inflammatory diseases with enhanced therapeutic efficacy.


Assuntos
Dendrímeros , Fosfitos , Dendrímeros/farmacologia , Fósforo , Proteínas , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico
5.
Mol Divers ; 28(1): 73-83, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36604370

RESUMO

Three-component reaction between trialkyl phosphites, dialkyl acetylenedicarboxylates and aromatic amines afforded ß-aminoalkylphosphonate derivatives. Similar reaction between trialkyl phosphites, dialkyl acetylenedicarboxylates and dinitrophenylhydrazine afforded ß-hydrazinooalkylphosphonate derivatives. This method includes both the C-N and C-P bond formation in a one pot and single synthetic step in neutral and simple reaction conditions. All reactions were conducted in CH2Cl2 as solvent at room temperature without using any catalyst, and the stable products were obtained in high yields. The structures of all products were proved by 1H, 13C and 31P NMR and IR spectral and elemental analysis data.


Assuntos
Fosfitos , Fosfitos/química , Aminas , Espectroscopia de Ressonância Magnética , Catálise , Hidrazinas
6.
Mol Divers ; 28(1): 209-216, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37843783

RESUMO

NaN3-catalysed three-component reaction between trialkyl phosphites, dialkyl acetylenedicarboxylates and ethyl arylmethylidenecyanoacetates afforded phosphonated cyclopentenone derivatives. The process involves one C-P and two C-C bond formations in one synthetic step. All reactions were conducted in acetone as solvent at room temperature and the products were obtained in high yields as stable solids. The products were isolated and purified by simple washing with water and diethyl ether without need to tedious chromatography methods. The structures of products were proved by 1H, 13C and 31P NMR and IR spectral and elemental analysis data.


Assuntos
Fosfitos , Fosfitos/química , Ciclopentanos , Água , Catálise
7.
Angew Chem Int Ed Engl ; 63(2): e202313985, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38014418

RESUMO

3-Deoxy-d-manno-oct-2-ulosonic acid (Kdo) is an eight-carbon monosaccharide found widely in bacterial lipopolysaccharides (LPSs) and capsule polysaccharides (CPSs). We developed an indirect method for the stereoselective synthesis of α-Kdo glycosides with a C3-p-tolylthio-substituted Kdo phosphite donor. The presence of the p-tolylthio group enhanced the reactivity, suppressed the formation of elimination by-products (2,3-enes), and provided complete α-stereocontrol. A variety of Kdo α-glycosides were synthesized by our method in excellent yields (up to 98 %). After glycosylation, the p-tolylthio group can be efficiently removed by free-radical reduction. Subsequently, the orthogonality of the phosphite donor and thioglycoside donor was demonstrated by the one-pot synthesis of a trisaccharide in Helicobacter pylori and Neisseria meningitidis LPS. Moreover, an efficient total synthesis route to the challenging 4,5-branched Kdo trisaccharide in LPSs from several A. baumannii strains was highlighted. To demonstrate the high reactivity of our approach further, the highly crowded 4,5,7,8-branched Kdo pentasaccharide was synthesized as a model molecule for the first time. Additionally, the reaction mechanism was investigated by DFT calculations.


Assuntos
Glicosídeos , Fosfitos , Oligossacarídeos , Açúcares Ácidos , Lipopolissacarídeos , Trissacarídeos
8.
Forensic Sci Int ; 354: 111911, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38154425

RESUMO

BACKGROUNDS: Restrictions in movement and closure of borders imposed by the Sars-Cov- 2 worldwide pandemic have affected the global illicit drug market, including cocaine trafficking. In this scenario, comparing cutting agents added to the cocaine and the drug purity are valuable strategies to understand how the drug trade has been impacted by the pandemic. METHODS: In this work, 204 cocaine salt materials seized in the Brazilian Federal District, before (2019) and during COVID-19 pandemics (2020) were analyzed by two analytical techniques: gas chromatography-mass spectrometry (GC-MS) and Fourier-transform infrared spectroscopy (FTIR). Statistical analyses, including Principal Component Analysis (PCA), were applied to evaluate the COVID-19 pandemic impact in the local market. Bibliometric analysis was performed as a forensic intelligence tool. RESULTS: From 2019-2020, cocaine average purity decreased 26 % while the frequency of cutting agents, as caffeine and anesthetics (lidocaine, tetracaine) increased. The high percentage of unknown were increased. Different cocaine profiling seized in 2020 showed new cutting agents, such as Irganox 1076, and Irgafos 168, indicating a trend on new adulterants/diluents introduced in the local market to mitigate the local drug shortage. Also in 2020, there was an increase in the local cocaine seizures, despite of the cocaine drug purity decreased by 26 % compared to 2019. CONCLUSIONS: Taken together, these data showed that the covid-19 pandemics has impacted cocaine trafficking in the Brazilian Federal District, an increase in cocaine seizures, which may indicate greater demand for the drug and, specially, changes in the cocaine purity and cutting agents profiling showing how traffickers tried to minimize difficulties in crossing the Brazilian border during COVID-19 restrictions. The information is relevant since Brazil is one of the major departure points for traded cocaine to the world. Bibliometric analysis showed that Irgafos 168 and Irganox 1076 were consistently identified as cocaine cutting agents for the first time.


Assuntos
Hidroxitolueno Butilado/análogos & derivados , COVID-19 , Cocaína , Fosfitos , Humanos , Brasil , Pandemias , Cocaína/análise , Convulsões , Contaminação de Medicamentos
9.
Food Chem Toxicol ; 182: 114094, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37925014

RESUMO

Recent advancements in the generation of high-throughput multi-omics data have provided a vast array of candidate genes for the genetic engineering of plants. However, as part of their safety assessment, newly expressed proteins in genetically modified crops must be evaluated for potential cross-reactivity with known allergens. In this study, we developed transgenic canola plants expressing the Arabidopsis thaliana PAP17 gene and a novel selectable marker composed of the ptxD gene from Pseudomonas stutzeri. To evaluate the potential allergenic cross-reactivity of the AtPAP17 and PTXD proteins expressed in transgenic canola, we applied a comprehensive approach utilizing sequence-based, motif-based, and 3D structure-based analyses. Our results demonstrate that the risk of conferring cross-reactivity with known allergens is negligible, indicating that the expression of these proteins in transgenic canola poses a low allergenic risk.


Assuntos
Oxirredutases , Fosfitos , Plantas Geneticamente Modificadas/metabolismo , Fosfitos/metabolismo , NAD , Alérgenos/genética , Produtos Agrícolas/genética , Biologia Computacional
10.
Proc Natl Acad Sci U S A ; 120(45): e2309743120, 2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-37922328

RESUMO

Oxidation of phosphite (HPO32-) to phosphate (HPO42-) releases electrons at a very low redox potential (E0'= -690 mV) which renders phosphite an excellent electron donor for microbial energy metabolism. To date, two pure cultures of strictly anaerobic bacteria have been isolated that run their energy metabolism on the basis of phosphite oxidation, the Gram-negative Desulfotignum phosphitoxidans (DSM 13687) and the Gram-positive Phosphitispora fastidiosa (DSM 112739). Here, we describe the key enzyme for dissimilatory phosphite oxidation in these bacteria. The enzyme catalyzed phosphite oxidation in the presence of adenosine monophosphate (AMP) to form adenosine diphosphate (ADP), with concomitant reduction of oxidized nicotinamide adenine dinucleotide (NAD+) to reduced nicotinamide adenine dinucleotide (NADH). The enzyme of P. fastidiosa was heterologously expressed in Escherichia coli. It has a molecular mass of 35.2 kDa and a high affinity for phosphite and NAD+. Its activity was enhanced more than 100-fold by addition of ADP-consuming adenylate kinase (myokinase) to a maximal activity between 30 and 80 mU x mg protein-1. A similar NAD-dependent enzyme oxidizing phosphite to phosphate with concomitant phosphorylation of AMP to ADP is found in D. phosphitoxidans, but this enzyme could not be heterologously expressed. Based on sequence analysis, these phosphite-oxidizing enzymes are related to nucleotide-diphosphate-sugar epimerases and indeed represent AMP-dependent phosphite dehydrogenases (ApdA). A reaction mechanism is proposed for this unusual type of substrate-level phosphorylation reaction.


Assuntos
NAD , Fosfitos , NAD/metabolismo , Fosfitos/metabolismo , Oxirredução , Monofosfato de Adenosina/metabolismo , Difosfato de Adenosina/metabolismo , Fosfatos
11.
Environ Microbiol ; 25(11): 2068-2074, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37525971

RESUMO

Phosphite is a stable phosphorus compound that, together with phosphate, made up a substantial part of the total phosphorus content of the prebiotic Earth's crust. Oxidation of phosphite to phosphate releases electrons at an unusually low redox potential (-690 mV at pH 7.0). Numerous aerobic and anaerobic bacteria use phosphite as a phosphorus source and oxidise it to phosphate for synthesis of nucleotides and other phosphorus-containing cell constituents. Only two pure cultures of strictly anaerobic bacteria have been isolated so far that use phosphite as an electron donor in their energy metabolism, the Gram-positive Phosphitispora fastidiosa and the Gram-negative Desulfotignum phosphitoxidans. The key enzyme of this metabolism is an NAD+ -dependent phosphite dehydrogenase enzyme that phosphorylates AMP to ADP. These phosphorylating phosphite dehydrogenases were found to be related to nucleoside diphosphate sugar epimerases. The produced NADH is channelled into autotrophic CO2 fixation via the Wood-Ljungdahl (CO-DH) pathway, thus allowing for nearly complete assimilation of the substrate electrons into bacterial biomass. This extremely efficient type of electron flow connects energy and carbon metabolism directly through NADH and might have been important in the early evolution of life when phosphite was easily available on Earth.


Assuntos
Fosfitos , Fosfitos/química , Fosfitos/metabolismo , Elétrons , NAD/metabolismo , Anaerobiose , Oxirredução , Fósforo/metabolismo , Fosfatos
12.
Analyst ; 148(15): 3650-3658, 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37424451

RESUMO

Phosphite, the anion of phosphorus acid, is an important metabolite in the global biogeochemical phosphorus cycle and a phosphorus species with unique agricultural properties. As such, methods for detecting phosphite quantitatively and selectively are critical to evidencing phosphorus redox chemistry. Here, we present a fluorescence-based assay for phosphite, utilizing the NAD+-dependent oxidation of phosphite by phosphite dehydrogenase and the subsequent reduction of resazurin to resorufin. With the application of a thermostable phosphite dehydrogenase, a medium-invariant analytical approach, and novel sample preparation methods, the assay is capable of rapid and accurate phosphite quantification with a 3 µM limit of detection in a wide array of biologically- and environmentally-relevant matrices, including bacterial and archaeal cell lysate, seawater, anaerobic digester sludge, and plant tissue. We demonstrate the utility of the assay by quantitating phosphite uptake in a model crop plant in the presence or absence of a phosphite-oxidising strain of Pseudomonas stutzeri as a soil additive, establishing this bacterium as an efficient phosphite converting biofertilizer.


Assuntos
Fosfitos , Fosfitos/metabolismo , Bactérias/metabolismo , Oxirredução , Fósforo
13.
J Org Chem ; 88(15): 10617-10631, 2023 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-37462534

RESUMO

In this study, we successfully synthesized several kinds of P-modified nucleic acids from boranophosphate DNAs via an acyl phosphite intermediate in solution and on a solid support. In the solution-phase synthesis, phosphorothioate diester, phosphotriester, and phosphoramidate diester were synthesized in a one-pot reaction from boranophosphodiester via the conversion of an acyl phosphite as a key intermediate. In addition, doubly P-modified nucleic acid derivatives which were difficult to synthesize by the phosphoramidite and H-phosphonate methods were also obtained by the conversion reaction. In the solid-phase synthesis, a boranophosphate derivative was synthesized on a solid support using the H-boranophosphonate method. Then, an acyl phosphite intermediate was formed by treatment with pivaloyl chloride in pyridine, followed by appropriate transformations to obtain the P-modified derivatives such as phosphotriester and phosphorothioate diester. Notably, it was suggested that the conversion reaction of a boranophosphate to a phosphorothioate diester proceeded with retention of the stereochemistry of the phosphorous center. In addition, a phosphorothioate/phosphate chimeric dodecamer was successfully synthesized from a boranophosphate/phosphate chimeric dodecamer using the same strategy. Therefore, boranophosphate derivatives are versatile precursors for the synthesis of P-modified DNA, including chimeric derivatives.


Assuntos
Fosfitos , Fosfatos , DNA
14.
Food Chem Toxicol ; 178: 113877, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37336387

RESUMO

During and after fabrication of polymeric food contact articles (FCA), polymers undergo oxidation by thermal decomposition processes initiated by oxygen, heat, light, shear, and catalyst residues. To reduce degradation of the polymer, a commonly used secondary antioxidant (AO), Irgafos 168 (I-168), may be included. Use of I-168 in polymeric FCAs presents a potential concern for neurotoxicity due to its phosphate-containing degradation species, I-168ate. As a result, we evaluated dietary exposure and oral toxicity data for I-168 and its degradants when used as an AO in FCAs. Our exposure assessment included extensive review of the U.S. food-contact regulatory history of I-168 resulting in a combined cumulative estimated daily intake (CEDI) of 0.09 mg/kg bw/day for I-168 and I-168ate when used as an AO in FCAs. Our comprehensive literature review of toxicological data and supporting structure activity relationship (SAR) analysis of I-168 reactivity against acetylcholinesterase diminished concern for potential neurotoxic effects of I-168 and its degradants. An acceptable daily intake (ADI) value of 1 mg/kg bw/day for I-168 was derived from a two-year rodent combined chronic toxicity/carcinogenicity study, which is higher than the CEDI and supports the safety of current authorized food contact use levels of I-168.


Assuntos
Antioxidantes , Fosfitos , Antioxidantes/toxicidade , Fosfitos/toxicidade , Acetilcolinesterase , Alimentos
15.
J Org Chem ; 88(13): 8465-8479, 2023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-37224336

RESUMO

A mild, efficient, and transition-metal-free three-component coupling reaction involving arynes, phosphites, and aldehydes was established to afford 3-mono-substituted benzoxaphosphole 1-oxides. A range of 3-mono-substituted benzoxaphosphole 1-oxides was obtained from both aryl- and aliphatic-substituted aldehydes in moderate to good yields. Moreover, the synthetic utility of the reaction was demonstrated by a Gram-scale reaction and the transformation of the products into various P-containing bicycles.


Assuntos
Óxidos , Fosfitos , Aldeídos
16.
Angew Chem Int Ed Engl ; 62(26): e202305373, 2023 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-37119479

RESUMO

Conjugation of molecules or proteins to oligonucleotides can improve their functional and therapeutic capacity. However, such modifications are often limited to the 5' and 3' end of oligonucleotides. Herein, we report the development of an inexpensive and simple method that allows for the insertion of chemical handles into the backbone of oligonucleotides. This method is compatible with standardized automated solid-phase oligonucleotide synthesis, and relies on formation of phosphoramidates. A unique phosphoramidite is incorporated into a growing oligonucleotide, and oxidized to the desired phosphoramidate using iodine and an amine of choice. Azides, alkynes, amines, and alkanes have been linked to oligonucleotides via internally positioned phosphoramidates with oxidative coupling yields above 80 %. We show the design of phosphoramidates from secondary amines that specifically hydrolyze to the phosphate only at decreased pH. Finally, we show the synthesis of an antibody-DNA conjugate, where the oligonucleotide can be selectively released in a pH 5.5 buffer.


Assuntos
Imunoconjugados , Fosfitos , Técnicas de Síntese em Fase Sólida , Acoplamento Oxidativo , Aminas/química , DNA/química , Oligonucleotídeos/química
17.
ISME J ; 17(7): 1040-1051, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37087502

RESUMO

Despite being fundamental to multiple biological processes, phosphorus (P) availability in marine environments is often growth-limiting, with generally low surface concentrations. Picocyanobacteria strains encode a putative ABC-type phosphite/phosphate/phosphonate transporter, phnDCE, thought to provide access to an alternative phosphorus pool. This, however, is paradoxical given most picocyanobacterial strains lack known phosphite degradation or carbon-phosphate lyase pathway to utilise alternate phosphorus pools. To understand the function of the PhnDCE transport system and its ecological consequences, we characterised the PhnD1 binding proteins from four distinct marine Synechococcus isolates (CC9311, CC9605, MITS9220, and WH8102). We show the Synechococcus PhnD1 proteins selectively bind phosphorus compounds with a stronger affinity for phosphite than for phosphate or methyl phosphonate. However, based on our comprehensive ligand screening and growth experiments showing Synechococcus strains WH8102 and MITS9220 cannot utilise phosphite or methylphosphonate as a sole phosphorus source, we hypothesise that the picocyanobacterial PhnDCE transporter is a constitutively expressed, medium-affinity phosphate transporter, and the measured affinity of PhnD1 to phosphite or methyl phosphonate is fortuitous. Our MITS9220_PhnD1 structure explains the comparatively lower affinity of picocyanobacterial PhnD1 for phosphate, resulting from a more limited H-bond network. We propose two possible physiological roles for PhnD1. First, it could function in phospholipid recycling, working together with the predicted phospholipase, TesA, and alkaline phosphatase. Second, by having multiple transporters for P (PhnDCE and Pst), picocyanobacteria could balance the need for rapid transport during transient episodes of higher P availability in the environment, with the need for efficient P utilisation in typical phosphate-deplete conditions.


Assuntos
Organofosfonatos , Fosfitos , Synechococcus , Fósforo/metabolismo , Proteínas de Transporte de Fosfato , Fosfitos/metabolismo , Synechococcus/metabolismo , Fosfatos/metabolismo , Proteínas de Membrana Transportadoras
18.
Dalton Trans ; 52(13): 4237-4250, 2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-36897334

RESUMO

In these studies, we designed and investigated cyto- and genotoxic potential of five ruthenium cyclopentadienyl complexes bearing different phosphine and phosphite ligands. All of the complexes were characterized with spectroscopic analysis (NMR, FT-IR, ESI-MS, UV-vis, fluorescence and XRD (for two compounds)). For biological studies, we used three types of cells - normal peripheral blood mononuclear (PBM) cells, leukemic HL-60 cells and doxorubicin-resistance HL-60 cells (HL-60/DR). We compared the results obtained with those obtained for the complex with maleimide ligand CpRu(CO)2(η1-N-maleimidato) 1, which we had previously reported. We observed that the complexes CpRu(CO)(PPh3)(η1-N-maleimidato) 2a and CpRu(CO)(P(OEt)3)(η1-N-maleimidato) 3a were the most cytotoxic for HL-60 cells and non-cytotoxic for normal PBM cells. However, complex 1 was more cytotoxic for HL-60 cells than complexes 2a and 3a (IC50 = 6.39 µM vs. IC50 = 21.48 µM and IC50 = 12.25 µM, respectively). The complex CpRu(CO)(P(OPh)3)(η1-N-maleimidato) 3b is the most cytotoxic for HL-60/DR cells (IC50 = 104.35 µM). We found the genotoxic potential of complexes 2a and 3a only in HL-60 cells. These complexes also induced apoptosis in HL-60 cells. Docking studies showed that complexes 2a and CpRu(CO)(P(Fu)3)(η1-N-maleimidato) 2b have a small ability to degrade DNA, but they may cause a defect in DNA damage repair mechanisms leading to cell death. This hypothesis is corroborated with the results obtained in the plasmid relaxation assay in which ruthenium complexes bearing phosphine and phosphite ligands induce DNA breaks.


Assuntos
Antineoplásicos , Complexos de Coordenação , Neoplasias , Fosfitos , Rutênio , Humanos , Rutênio/farmacologia , Rutênio/química , Ligantes , Leucócitos Mononucleares , Espectroscopia de Infravermelho com Transformada de Fourier , Maleimidas/farmacologia , Complexos de Coordenação/química , Antineoplásicos/química , Linhagem Celular Tumoral
19.
Sci Rep ; 13(1): 1878, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36725973

RESUMO

Pseudomonas stutzeri phosphite dehydrogenase (PTDH) catalyzes the oxidation of phosphite to phosphate in the presence of NAD, resulting in the formation of NADH. The regeneration of NADH by PTDH is greater than any other enzyme due to the substantial change in the free energy of reaction (G°' = - 63.3 kJ/mol). Presently, improving the stability of PTDH is for a great importance to ensure an economically viable reaction process to produce phosphite as a byproduct for agronomic applications. The binding site of NAD+ with PTDH includes thirty-four residues; eight of which have been previously mutated and characterized for their roles in catalysis. In the present study, the unexplored twenty-six key residues involved in the binding of NAD+ were subjected to in silico mutagenesis based on the physicochemical properties of the amino acids. The effects of these mutations on the structure, stability, activity, and interaction of PTDH with NAD+ were investigated using molecular docking, molecular dynamics simulations, free energy calculations, and secondary structure analysis. We identified seven novel mutations, A155I, G157I, L217I, P235A, V262I, I293A, and I293L, that reduce the compactness of the protein while improving PTDH stability and binding to NAD+.


Assuntos
NAD , Fosfitos , NAD/metabolismo , Simulação de Acoplamento Molecular , Fosfitos/metabolismo , Engenharia de Proteínas/métodos , Sítios de Ligação/genética , Mutação , Cinética
20.
Mol Biotechnol ; 65(11): 1777-1795, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36790658

RESUMO

Phosphites have been used as inducers of resistance, activating the defense of plants and increasing its ability to respond to the invasion of the pathogen. However, the mode of action of phosphites in defense responses has not yet been fully elucidated. The objective of this study was to evaluate the effect of potassium phosphite (KPhi) in coffee cultivars with different levels of resistance to rust to clarify the mechanism by which KPhi activates the constitutive defense of plants. To this end, we studied the expression of genes and the activity of enzymes involved in the defense pathway of salicylic acid (SA) and reactive oxygen species (ROS), in addition to the levels of total soluble phenolic compounds and soluble lignin. Treatment with KPhi induced constitutive defense responses in cultivars resistant and susceptible to rust. The results suggest that KPhi acts in two parallel defense pathways, SA and ROS, which are essential for the induction of systemic acquired resistance (SAR) when activated simultaneously. The activation of the mechanisms associated with defense routes demonstrates that KPhi is a potential inducer of resistance in coffee plants.


Assuntos
Coffea , Fosfitos , Espécies Reativas de Oxigênio/metabolismo , Fosfitos/metabolismo , Coffea/genética , Coffea/metabolismo , Café , Plantas/metabolismo , Doenças das Plantas/genética , Ácido Salicílico/metabolismo , Regulação da Expressão Gênica de Plantas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...